
Toggle navigation GemBox.Pdf

	Overview
	Examples
	Free version
	Support
	Pricelist

Show / Hide Table of Contents

PdfSignatureField Class
	Namespace:
	GemBox.Pdf.Forms

	Assembly:
	GemBox.Pdf.dll

Represents a signature field (PDF 1.3) which is a form field that contains a digital signature (see 12.8, "Digital Signatures").

	C#
	VB.NET

public sealed class PdfSignatureField : PdfField

Public NotInheritable Class PdfSignatureField
 Inherits PdfField

	Inheritance:
	Object
PdfObject
PdfAnnotation
PdfField
PdfSignatureField

Properties
Appearance
Gets the appearance settings for this PdfSignatureField.

	C#
	VB.NET

public PdfSignatureAppearance Appearance { get; }

Public ReadOnly Property Appearance As PdfSignatureAppearance

Property Value
	PdfSignatureAppearance
	

The appearance settings for this PdfSignatureField.

FieldType
Gets the Signature value.

	C#
	VB.NET

public override PdfFieldType FieldType { get; }

Public Overrides ReadOnly Property FieldType As PdfFieldType

Property Value
	PdfFieldType
	

The Signature value.

Overrides
PdfField.FieldType
LockedFields
Gets or sets the set of form fields whose change invalidate the signature.

	C#
	VB.NET

public PdfSignatureLockedFieldCollection LockedFields { get; set; }

Public Property LockedFields As PdfSignatureLockedFieldCollection

Property Value
	PdfSignatureLockedFieldCollection
	

The set of form fields whose change invalidate the signature.

Exceptions
	InvalidOperationException
	

The LockedFields can be set to null only (thus removing the entry from the PdfSignatureField). To set a non-null value, use any SetLockedFields() method instead.

See Also
PDF Specification ISO 32000-1:2008, section '12.7.4.5 Signature Fields'

Required
If set, the field shall have a value at the time it is exported by a submit-form action (see 12.7.5.2, "Submit-Form Action").

	C#
	VB.NET

public bool Required { get; set; }

Public Property Required As Boolean

Property Value
	Boolean
	

If set, the field shall have a value at the time it is exported by a submit-form action.

See Also
PDF Specification ISO 32000-1:2008, section '12.7.3 Field Dictionaries'

Value
Gets or sets the PdfSignatureField value as an instance of the PdfSignature type.
Setting this property, Appearance gets automatically updated.

	C#
	VB.NET

public PdfSignature Value { get; set; }

Public Property Value As PdfSignature

Property Value
	PdfSignature
	

The PdfSignatureField value as an instance of the PdfSignature type.

Exceptions
	InvalidOperationException
	

The Value can be set to null only (thus removing the PdfSignature from the PdfSignatureField). To set a non-null value, use any Sign(PdfSigner) method instead.

Methods
SetLockedFields()
Sets the set of form fields whose change invalidate the signature to a predefined value that represents all fields in the document.

	C#
	VB.NET

public PdfSignatureLockedFieldCollection SetLockedFields()

Public Function SetLockedFields As PdfSignatureLockedFieldCollection

Returns
	PdfSignatureLockedFieldCollection
	

The set of form fields whose change invalidate the signature.

SetLockedFields(PdfField[])
Sets the set of form fields whose change invalidate the signature to those specified in the fields.

	C#
	VB.NET

public PdfSignatureLockedFieldCollection SetLockedFields(params PdfField[] fields)

Public Function SetLockedFields(ParamArray fields As PdfField()) As PdfSignatureLockedFieldCollection

Parameters
	fields
	PdfField[]

The fields.

Returns
	PdfSignatureLockedFieldCollection
	

The set of form fields whose change invalidate the signature.

Exceptions
	ArgumentNullException
	

The parameter fields is either null or an empty sequence.

SetLockedFields(Boolean, PdfField[])
Sets the set of form fields whose change invalidate the signature to either those specified in the fields (if excluded is false) or all fields except those specified in the fields (if excluded is true).

	C#
	VB.NET

public PdfSignatureLockedFieldCollection SetLockedFields(bool excluded, params PdfField[] fields)

Public Function SetLockedFields(excluded As Boolean, ParamArray fields As PdfField()) As PdfSignatureLockedFieldCollection

Parameters
	excluded
	Boolean

if set to true, then the set of form fields whose change invalidate the signature is set to all fields except those specified in the fields; otherwise, it is set to those specified in the fields.

	fields
	PdfField[]

The fields.

Returns
	PdfSignatureLockedFieldCollection
	

The set of form fields whose change invalidate the signature.

Exceptions
	ArgumentNullException
	

The parameter fields is either null or an empty sequence.

SetLockedFields(Boolean, IEnumerable<PdfField>)
Sets the set of form fields whose change invalidate the signature to either those specified in the fields (if excluded is false) or all fields except those specified in the fields (if excluded is true).

	C#
	VB.NET

public PdfSignatureLockedFieldCollection SetLockedFields(bool excluded, IEnumerable<PdfField> fields)

Public Function SetLockedFields(excluded As Boolean, fields As IEnumerable(Of PdfField)) As PdfSignatureLockedFieldCollection

Parameters
	excluded
	Boolean

if set to true, then the set of form fields whose change invalidate the signature is set to all fields except those specified in the fields; otherwise, it is set to those specified in the fields.

	fields
	IEnumerable<PdfField>

The fields.

Returns
	PdfSignatureLockedFieldCollection
	

The set of form fields whose change invalidate the signature.

Exceptions
	ArgumentNullException
	

The parameter fields is either null or an empty sequence.

SetLockedFields(Boolean, IEnumerable<String>)
Sets the set of form fields whose change invalidate the signature to either those specified in the fieldNames (if excluded is false) or all fields except those specified in the fieldNames (if excluded is true).

	C#
	VB.NET

public PdfSignatureLockedFieldCollection SetLockedFields(bool excluded, IEnumerable<string> fieldNames)

Public Function SetLockedFields(excluded As Boolean, fieldNames As IEnumerable(Of String)) As PdfSignatureLockedFieldCollection

Parameters
	excluded
	Boolean

if set to true, then the set of form fields whose change invalidate the signature is set to all fields except those specified in the fieldNames; otherwise, it is set to those specified in the fieldNames.

	fieldNames
	IEnumerable<String>

The field names.

Returns
	PdfSignatureLockedFieldCollection
	

The set of form fields whose change invalidate the signature.

Exceptions
	ArgumentNullException
	

The parameter fieldNames is either null or an empty sequence.

SetLockedFields(Boolean, String[])
Sets the set of form fields whose change invalidate the signature to either those specified in the fieldNames (if excluded is false) or all fields except those specified in the fieldNames (if excluded is true).

	C#
	VB.NET

public PdfSignatureLockedFieldCollection SetLockedFields(bool excluded, params string[] fieldNames)

Public Function SetLockedFields(excluded As Boolean, ParamArray fieldNames As String()) As PdfSignatureLockedFieldCollection

Parameters
	excluded
	Boolean

if set to true, then the set of form fields whose change invalidate the signature is set to all fields except those specified in the fieldNames; otherwise, it is set to those specified in the fieldNames.

	fieldNames
	String[]

The field names.

Returns
	PdfSignatureLockedFieldCollection
	

The set of form fields whose change invalidate the signature.

Exceptions
	ArgumentNullException
	

The parameter fieldNames is either null or an empty sequence.

SetLockedFields(IEnumerable<PdfField>)
Sets the set of form fields whose change invalidate the signature to those specified in the fields.

	C#
	VB.NET

public PdfSignatureLockedFieldCollection SetLockedFields(IEnumerable<PdfField> fields)

Public Function SetLockedFields(fields As IEnumerable(Of PdfField)) As PdfSignatureLockedFieldCollection

Parameters
	fields
	IEnumerable<PdfField>

The fields.

Returns
	PdfSignatureLockedFieldCollection
	

The set of form fields whose change invalidate the signature.

Exceptions
	ArgumentNullException
	

The parameter fields is either null or an empty sequence.

SetLockedFields(IEnumerable<String>)
Sets the set of form fields whose change invalidate the signature to those specified in the fieldNames.

	C#
	VB.NET

public PdfSignatureLockedFieldCollection SetLockedFields(IEnumerable<string> fieldNames)

Public Function SetLockedFields(fieldNames As IEnumerable(Of String)) As PdfSignatureLockedFieldCollection

Parameters
	fieldNames
	IEnumerable<String>

The field names.

Returns
	PdfSignatureLockedFieldCollection
	

The set of form fields whose change invalidate the signature.

Exceptions
	ArgumentNullException
	

The parameter fieldNames is either null or an empty sequence.

SetLockedFields(String[])
Sets the set of form fields whose change invalidate the signature to those specified in the fieldNames.

	C#
	VB.NET

public PdfSignatureLockedFieldCollection SetLockedFields(params string[] fieldNames)

Public Function SetLockedFields(ParamArray fieldNames As String()) As PdfSignatureLockedFieldCollection

Parameters
	fieldNames
	String[]

The field names.

Returns
	PdfSignatureLockedFieldCollection
	

The set of form fields whose change invalidate the signature.

Exceptions
	ArgumentNullException
	

The parameter fieldNames is either null or an empty sequence.

Sign(PdfSigner)
Initiate signing of a PDF file using the specified PdfSigner that does the actual signing in a format specified by SignatureFormat.
The length of the signature returned by the signer must be less than EstimatedSignatureContentsLength.
The name of the preferred signature handler to use when validating the signature (Filter entry) is Adobe.PPKLite, the Format of the returned PdfSignature instance is SignatureFormat and the ContentsLength is EstimatedSignatureContentsLength bytes.
To finish the signing, call any of the Save(). Next signing cannot be initiated before the current one is not finished.
The returned PdfSignature is set to the Value thus automatically updating the Appearance.
note
If the Value is not null, then the method re-signs the PDF file directly and the Save() should not be called. This behavior enables delay-sign and re-sign scenarios.

	C#
	VB.NET

public PdfSignature Sign(PdfSigner signer)

Public Function Sign(signer As PdfSigner) As PdfSignature

Parameters
	signer
	PdfSigner

The signer whose ComputeSignature(Stream) method is called when saving the PDF file that takes the PDF file stream (without Content entry) as an input and returns the signature that will be set as the value of the Content entry.

Returns
	PdfSignature
	

A PdfSignature instance that contains signature properties (the Date, the Name, the Reason, the Location); key information (the signing certificate used to verify the signature value and, optionally, other certificates used to verify the authenticity of the signing certificate); reference (describes the exact byte range for the digest calculation); and signature value (usually a DER-encoded PKCS#7 binary data object that conforms to RFC 5652 Cryptographic Message Syntax).

Exceptions
	ArgumentNullException
	

signer is null.

	InvalidOperationException
	

This PdfSignatureField is not contained in the Fields of this PDF document. -or- Signing/timestamping of the PDF file has already been initiated on some PdfSignatureField in this PDF document. Finish that signing/timestamping by calling any of the Save() before initiating a new signing/timestamping on this PdfSignatureField.

Sign(Func<Stream, Byte[]>, PdfSignatureFormat, Int32)
Initiate signing of a PDF file using the specified delegate that does the actual signing in a format specified by signatureFormat.
The length of the signature returned by the signer delegate must be less than estimatedSignatureContentsLength.
The name of the preferred signature handler to use when validating the signature (Filter entry) is Adobe.PPKLite, the Format of the returned PdfSignature instance is signatureFormat and the ContentsLength is estimatedSignatureContentsLength bytes.
To finish the signing, call any of the Save(). Next signing cannot be initiated before the current one is not finished.
The returned PdfSignature is set to the Value thus automatically updating the Appearance.
note
If the Value is not null, then the method re-signs the PDF file directly and the Save() should not be called. This behavior enables delay-sign and re-sign scenarios.

	C#
	VB.NET

public PdfSignature Sign(Func<Stream, byte[]> signer, PdfSignatureFormat signatureFormat, int estimatedSignatureContentsLength)

Public Function Sign(signer As Func(Of Stream, Byte()), signatureFormat As PdfSignatureFormat, estimatedSignatureContentsLength As Integer) As PdfSignature

Parameters
	signer
	Func<Stream, Byte[]>

The signer delegate called when saving the PDF file that takes the PDF file stream (without Content entry) as an input and returns the signature that will be set as the value of the Content entry.

	signatureFormat
	PdfSignatureFormat

The encoding of the signature value and key information in the signature dictionary.

	estimatedSignatureContentsLength
	Int32

The estimated length of the Content entry (in bytes) that should be large enough to contain the entire data returned by the signer delegate.

Returns
	PdfSignature
	

A PdfSignature instance that contains signature properties (the Date, the Name, the Reason, the Location); key information (the signing certificate used to verify the signature value and, optionally, other certificates used to verify the authenticity of the signing certificate); reference (describes the exact byte range for the digest calculation); and signature value (usually a DER-encoded PKCS#7 binary data object that conforms to RFC 5652 Cryptographic Message Syntax).

Exceptions
	ArgumentNullException
	

signer is null.

	InvalidOperationException
	

This PdfSignatureField is not contained in the Fields of this PDF document. -or- Signing/timestamping of the PDF file has already been initiated on some PdfSignatureField in this PDF document. Finish that signing/timestamping by calling any of the Save() before initiating a new signing/timestamping on this PdfSignatureField.

Sign(Object)
Initiate signing of a PDF file with a digital ID from the specified source.
The digital ID source is either an instance of a X509Certificate2 with a private key or an instance of a CspParameters.
The name of the preferred signature handler to use when validating the signature (Filter entry) is Adobe.PPKLite, the Format of the returned PdfSignature instance is PKCS7 and the ContentsLength is set to the internally estimated size.
To finish the signing, call any of the Save(). Next signing cannot be initiated before the current one is not finished.
The returned PdfSignature is set to the Value thus automatically updating the Appearance.
If your project doesn't target Windows platform, to use this method, make sure your project references NuGet package System.Security.Cryptography.Pkcs.
note
If the Value is not null, then the method re-signs the PDF file directly and the Save() should not be called. This behavior enables delay-sign and re-sign scenarios.

	C#
	VB.NET

public PdfSignature Sign(object digitalIdSource)

Public Function Sign(digitalIdSource As Object) As PdfSignature

Parameters
	digitalIdSource
	Object

The digital ID source that is either an instance of a X509Certificate2 with a private key or an instance of a CspParameters.

Returns
	PdfSignature
	

A PdfSignature instance that contains signature properties (the Date, the Name, the Reason, the Location); key information (the signing certificate used to verify the signature value and, optionally, other certificates used to verify the authenticity of the signing certificate); reference (describes the exact byte range for the digest calculation); and signature value (usually a DER-encoded PKCS#7 binary data object that conforms to RFC 5652 Cryptographic Message Syntax).

Exceptions
	ArgumentException
	

The digitalIdSource parameter is not an instance of a X509Certificate2 or a CspParameters.

	InvalidOperationException
	

This PdfSignatureField is not contained in the Fields of this PDF document. -or- Signing/timestamping of the PDF file has already been initiated on some PdfSignatureField in this PDF document. Finish that signing/timestamping by calling any of the Save() before initiating a new signing/timestamping on this PdfSignatureField.

Sign(String, String)
Initiate signing of a PDF file with a digital ID available as a file with the specified file name and the password protecting the private key.
The most common format for such files is a PKCS#12 file, which uses .pfx or .p12 file extension and is a password protected storage container for digital IDs containing the public key (Certificate) and the associated private key.
The name of the preferred signature handler to use when validating the signature (Filter entry) is Adobe.PPKLite, the Format of the returned PdfSignature instance is PKCS7 and the ContentsLength is set to the internally estimated size.
To finish the signing, call any of the Save(). Next signing cannot be initiated before the current one is not finished.
The returned PdfSignature is set to the Value thus automatically updating the Appearance.
If your project doesn't target Windows platform, to use this method, make sure your project references NuGet package System.Security.Cryptography.Pkcs.
note
If the Value is not null, then the method re-signs the PDF file directly and the Save() should not be called. This behavior enables delay-sign and re-sign scenarios.

	C#
	VB.NET

public PdfSignature Sign(string digitalIdFileName, string digitalIdPassword)

Public Function Sign(digitalIdFileName As String, digitalIdPassword As String) As PdfSignature

Parameters
	digitalIdFileName
	String

The name of a digital ID file that contains the public key (Certificate) and the associated private key.

	digitalIdPassword
	String

The password protecting the private key.

Returns
	PdfSignature
	

A PdfSignature instance that contains signature properties (the Date, the Name, the Reason, the Location); key information (the signing certificate used to verify the signature value and, optionally, other certificates used to verify the authenticity of the signing certificate); reference (describes the exact byte range for the digest calculation); and signature value (usually a DER-encoded PKCS#7 binary data object that conforms to RFC 5652 Cryptographic Message Syntax).

Exceptions
	InvalidOperationException
	

This PdfSignatureField is not contained in the Fields of this PDF document. -or- Signing/timestamping of the PDF file has already been initiated on some PdfSignatureField in this PDF document. Finish that signing/timestamping by calling any of the Save() before initiating a new signing/timestamping on this PdfSignatureField.

Timestamp(PdfTimestamper)
Initiate timestamping of a PDF file using the specified PdfTimestamper that does the actual timestamping.
The length of the timestamp token returned by the timestamper must be less than GemBox.Pdf.Security.PdfTimestamper.EstimatedTimestampTokenLength.
The name of the preferred signature handler to use when validating the signature (Filter entry) is Adobe.PPKLite, the Format of the returned PdfSignature instance is RFC3161 and the ContentsLength is GemBox.Pdf.Security.PdfTimestamper.EstimatedTimestampTokenLength bytes.
To finish the timestamping, call any of the Save(). Next signing or timestamping cannot be initiated before the current one is not finished.

	C#
	VB.NET

public PdfSignature Timestamp(PdfTimestamper timestamper)

Public Function Timestamp(timestamper As PdfTimestamper) As PdfSignature

Parameters
	timestamper
	PdfTimestamper

The timestamper whose GemBox.Pdf.Security.PdfTimestamper.GetTimestampToken(System.IO.Stream) method is called when saving the PDF file that takes the PDF file stream (without Content entry) as an input and returns the timestamp token that will be set as the value of the Content entry.

Returns
	PdfSignature
	

A PdfSignature instance that will contain TimeStampToken as specified in RFC 3161 as updated by RFC 5816. The value of the messageImprint field within the TimeStampToken shall be a hash of the bytes of the document indicated by the ByteRange and the ByteRange shall specify the complete PDF file contents (excepting the Content value).

Exceptions
	ArgumentNullException
	

timestamper is null.

	InvalidOperationException
	

This PdfSignatureField is not contained in the Fields of this PDF document. -or- Signing/timestamping of the PDF file has already been initiated on some PdfSignatureField in this PDF document. Finish that signing/timestamping by calling any of the Save() before initiating a new signing/timestamping on this PdfSignatureField.

Inherited Properties
	Actions	(Optional; PDF 1.1) An action that shall be performed when the field's annotation is activated (see 12.6, "Actions").
(Inherited from PdfField)

	AnnotationType	Gets the Widget value.
(Inherited from PdfField)

	AssociatedFiles	(Optional; PDF 2.0) An array of one or more PdfFileSpecifications which denote the associated files for this PdfAnnotation.
(Inherited from PdfAnnotation)

	Bounds	(Required) The annotation bounds, defining the location and the size of the annotation on the page in default user space units.
(Inherited from PdfAnnotation)

	DefaultValue	(Optional; inheritable) The default value to which the field reverts when a reset-form action is executed. The format of this value is the same as that of Value.
(Inherited from PdfField)

	Hidden	(PDF 1.2) If set, do not display the annotation on the screen or allow it to interact with the user.
The annotation may be printed (depending on the setting of the Print flag) but should be considered hidden for purposes of on-screen display and user interaction.
(Inherited from PdfField)

	Locked	(PDF 1.4) If set, do not allow the annotation to be deleted or its properties (including position and size) to be modified by the user. However, this flag does not restrict changes to the annotation's contents, such as the value of a form field.
(Inherited from PdfAnnotation)

	Metadata	(Optional; PDF 1.4) A metadata stream containing metadata for the component.
(Inherited from PdfObject)

	Name	Gets the (fully qualified) field name.
(Inherited from PdfField)

	Page	Gets the page with which this annotation is associated.
(Inherited from PdfAnnotation)

	Print	(PDF 1.2) If set, print the annotation when the page is printed. If clear, never print the annotation, regardless of whether it is displayed on the screen.
note
This can be useful for annotations representing interactive pushbuttons, which would serve no meaningful purpose on the printed page.

(Inherited from PdfField)

	ReadOnly	If set, the user may not change the value of the field. Any associated widget annotations will not interact with the user; that is, they will not respond to mouse clicks or change their appearance in response to mouse motions. This flag is useful for fields whose values are computed or imported from a database.
(Inherited from PdfField)

	Tooltip	(Optional; PDF 1.3) An alternate field name that shall be used in place of the actual field name wherever the field shall be identified in the user interface (such as in error or status messages referring to the field). This text is also useful when extracting the document's contents in support of accessibility to users with disabilities or for other purposes (see 14.9.3, "Alternate Descriptions").
(Inherited from PdfField)

Inherited Methods
	SetBounds(Double, Double)	Sets the size of the Bounds.
(Inherited from PdfAnnotation)

	SetBounds(Double, Double, Double, Double)	Sets the Bounds.
(Inherited from PdfAnnotation)

	ToString()	Returns a String that represents this PdfField instance.
(Inherited from PdfField)

Extension Methods
PdfObjectExtensions.GetDictionary(PdfObject)
PdfObjectExtensions.GetOrAddDictionary(PdfObject)
PdfObjectExtensions.GetArray(PdfObject)
Examples
Digital signature examples
Visible digital signature example
Remove digital signature example
External digital signature example
PAdES B-LTA level example

Back to topFacebook • Twitter • LinkedIn
© GemBox Ltd. — All rights reserved.

