
 ×

GemBox.Pdf	Overview
	 Examples	Getting Started
	Common Uses	Reading
	Writing
	Convert
	Convert from Image
	Print
	Merge Files
	Split File

	Basic Features	Images
	Shapes (Paths)
	Content Formatting
	Bookmarks (Outlines)
	Hyperlinks
	Document Properties
	Header and Footer
	Watermarks
	Charts and Barcodes
	Table Of Contents

	Advanced Features	Cloning
	Incremental Update
	Viewer Preferences
	Content Streams and Resources
	Form XObjects
	Content Groups
	Marked Content
	Page Tree
	Basic Objects
	Private Fonts
	Optical Character Recognition (OCR)
	Redaction of Content

	Interactive Forms	Create Form
	Fill in Form
	Flatten Form
	Read Form
	Export Form
	Form Actions

	Security	Encryption
	Digital Signature
	Digital Signature Workflows
	Digital Signature PAdES
	Digital Signature PKCS#11
	Digital Signature Validation

	Attachments	Embedded Files
	File Attachment Annotations
	Portfolios
	Associated Files

	Platforms	ASP.NET Core
	Azure
	Blazor
	Docker
	Linux / macOS
	MAUI
	Xamarin
	Export to XpsDocument in WPF
	Export to ImageSource in WPF
	Classic ASP
	PHP
	Python

	Articles	Manipulate Images in PDF
	Printing
	PDF Security
	Convert PDF to Image
	Extract Content

	Free / Trial / Professional

	Free version
	Support
	Pricelist

 × 	Getting Started
	 Toggle Common Uses
	Reading
	Writing
	Convert
	Convert from Image
	Print
	Merge Files
	Split File

	 Toggle Basic Features
	Images
	Shapes (Paths)
	Content Formatting
	Bookmarks (Outlines)
	Hyperlinks
	Document Properties
	Header and Footer
	Watermarks
	Charts and Barcodes
	Table Of Contents

	 Toggle Advanced Features
	Cloning
	Incremental Update
	Viewer Preferences
	Content Streams and Resources
	Form XObjects
	Content Groups
	Marked Content
	Page Tree
	Basic Objects
	Private Fonts
	Optical Character Recognition (OCR)
	Redaction of Content

	 Toggle Interactive Forms
	Create Form
	Fill in Form
	Flatten Form
	Read Form
	Export Form
	Form Actions

	 Toggle Security
	Encryption
	Digital Signature
	Digital Signature Workflows
	Digital Signature PAdES
	Digital Signature PKCS#11
	Digital Signature Validation

	 Toggle Attachments
	Embedded Files
	File Attachment Annotations
	Portfolios
	Associated Files

	 Toggle Platforms
	ASP.NET Core
	Azure
	Blazor
	Docker
	Linux / macOS
	MAUI
	Xamarin
	Export to XpsDocument in WPF
	Export to ImageSource in WPF
	Classic ASP
	PHP
	Python

	 Toggle Articles
	Manipulate Images in PDF
	Printing
	PDF Security
	Convert PDF to Image
	Extract Content

	Free / Trial / Professional

Private Fonts
Private fonts are fonts that are not installed or don't need to be installed on the computer that executes your PDF app. Using private fonts is required in environments with no installed fonts (like on Docker) or restricted environments that don't have access to system fonts (like on Medium Level Trust applications). Private fonts can be embedded in an assembly or located in a custom directory.
GemBox.Pdf enables you to use either system or private fonts when writing text. The PdfFonts class allows you to browse all standard, system, and private font families and font faces.
Note that GemBox.Pdf ignores the font embedding rights (PdfFontFace.EmbeddingRights). That's why it's the application developer's responsibility to run the font licensing rights check. In case you have any doubts, please contact the font's vendor.
The image below shows the result of the example code snippet we used to demonstrate how to write text using private fonts (Almonte Snow.ttf and almonte woodgrain.ttf). Notice that they are located in the same directory as the application.
Screenshot of PDF file with text from private fonts Run Example

Output file type Pdf
Xps
Png
Jpeg
Gif
Bmp
Tiff
Wdp

	C#
	VB.NET

 Copy View on GitHub
using System.Linq;using GemBox.Pdf;using GemBox.Pdf.Content;class Program{ static void Main() { // If using the Professional version, put your serial key below. ComponentInfo.SetLicense("FREE-LIMITED-KEY"); using (var document = new PdfDocument()) { var page = document.Pages.Add(); using (var formattedText = new PdfFormattedText()) { formattedText.FontSize = 48; formattedText.LineHeight = 72; // Use the font family 'Almonte Snow' whose font file is located in the same directory as the application. formattedText.FontFamily = new PdfFontFamily(null, "Almonte Snow"); formattedText.AppendLine("Hello World 1!"); // Use the font family 'Almonte Woodgrain' whose font file is located in the same directory as the application. formattedText.FontFamily = new PdfFontFamily(null, "Almonte Woodgrain"); formattedText.AppendLine("Hello World 2!"); // Another way to use the font family 'Almonte Snow' whose font file is located in the same directory as the application. formattedText.FontFamily = PdfFonts.GetFontFamilies(null).First(ff => ff.Name == "Almonte Snow"); formattedText.AppendLine("Hello World 3!"); // Another way to use the font family 'Almonte Woodgrain' whose font file is located in the same directory as the application. formattedText.FontFamily = PdfFonts.GetFontFamilies(null).First(ff => ff.Name == "Almonte Woodgrain"); formattedText.Append("Hello World 4!"); page.Content.DrawText(formattedText, new PdfPoint(100, 500)); } document.Save("Private Fonts.%OutputFileType%"); } }}

Imports System.LinqImports GemBox.PdfImports GemBox.Pdf.ContentModule Program Sub Main() ' If using the Professional version, put your serial key below. ComponentInfo.SetLicense("FREE-LIMITED-KEY") Using document = New PdfDocument() Dim page = document.Pages.Add() Using formattedText = New PdfFormattedText() formattedText.FontSize = 48 formattedText.LineHeight = 72 ' Use the font family 'Almonte Snow' whose font file is located in the same directory as the application. formattedText.FontFamily = New PdfFontFamily(Nothing, "Almonte Snow") formattedText.AppendLine("Hello World 1!") ' Use the font family 'Almonte Woodgrain' whose font file is located in the same directory as the application. formattedText.FontFamily = New PdfFontFamily(Nothing, "Almonte Woodgrain") formattedText.AppendLine("Hello World 2!") ' Another way to use the font family 'Almonte Snow' whose font file is located in the same directory as the application. formattedText.FontFamily = PdfFonts.GetFontFamilies(Nothing).First(Function(ff) ff.Name = "Almonte Snow") formattedText.AppendLine("Hello World 3!") ' Another way to use the font family 'Almonte Woodgrain' whose font file is located in the same directory as the application. formattedText.FontFamily = PdfFonts.GetFontFamilies(Nothing).First(Function(ff) ff.Name = "Almonte Woodgrain") formattedText.Append("Hello World 4!") page.Content.DrawText(formattedText, New PdfPoint(100, 500)) End Using document.Save("Private Fonts.%OutputFileType%") End Using End SubEnd Module

Assembly fonts
GemBox.Pdf supports assembly-embedded fonts in PDF files by using the PdfFonts.GetFontFamilies(string, string) method.
When you add fonts as resources to your application, make sure you're setting the Build Action as Embedded resource.
Or if your application is targeting .NET Framework and thus uses WPF, set it as Resource instead. Also, make sure that System.Windows.Application.ResourceAssembly is correctly initialized, if you want to format text that uses embedded fonts with PdfTextFormattingMode.WPF or PdfTextFormattingMode.WPFDisplay text formatting mode.
The following image shows an example of a solution with font files added as embedded resources, and the following table illustrates the various assemblyName and location values you can specify to retrieve those fonts.
	Retrieved font	assemblyName	location	Notes
	Font1.ttf	null, string.Empty, or "MyConsoleApplication"	null or string.Empty	Font resource files are in the root of the local assembly.
	Font2.ttf	null, string.Empty, or "MyConsoleApplication"	"MyFonts"	Font resource files are in the subfolder of the local assembly.
	Font3.ttf	"MyClassLibrary"	null or string.Empty	Font resource files are in the root of the referenced assembly.
	Font4.ttf	"MyClassLibrary"	"MyFonts"	Font resource files are in the subfolder of the referenced assembly.

See also

Optical character recognition (OCR) in C# and VB.NET

Next steps
GemBox.Pdf is a .NET component that enables developers to read, merge and split PDF files or execute low-level object manipulations from .NET applications in a simple and efficient way.
Download Buy

GemBox.Pdf is a .NET component that enables developers to read, merge and split PDF files or execute low-level object manipulations from .NET applications in a simple and efficient way.
Our customers
DHL NASA BPWhat do they say
Being able to include the product directly in my C# project from the NuGet Package Manager has made its installation incredibly easy. So far it has worked brilliantly with a very intuitive API and easy learning curve.

 Ryan Russell
 Software Developer at Aventa Systems

GemBox Technical Support is wonderful. They’re responsive and incredibly helpful by providing code snippets and examples. I’ve never had to go back to them twice for the same issue because the issue wasn’t addressed correctly. Congratulations on such a useful product and superior customer support!

 Aimee Stinson
 .NET Specialist at Xperts, Inc.

All Examples

	Sitemap
	Terms of Service
	Privacy Policy
	Contact

 	 Twitter
	 Facebook
	 LinkedIn

 Return to Top
© GemBox Ltd. — All rights reserved.

