
 ×

GemBox.Pdf	Overview
	 Examples	Getting Started
	Common Uses	Reading
	Writing
	Convert
	Convert from Image
	Print
	Merge Files
	Split File

	Basic Features	Images
	Shapes (Paths)
	Content Formatting
	Bookmarks (Outlines)
	Hyperlinks
	Document Properties
	Header and Footer
	Watermarks
	Charts and Barcodes
	Table Of Contents

	Advanced Features	Cloning
	Incremental Update
	Viewer Preferences
	Content Streams and Resources
	Form XObjects
	Content Groups
	Marked Content
	Page Tree
	Basic Objects
	Private Fonts
	Optical Character Recognition (OCR)
	Redaction of Content

	Interactive Forms	Create Form
	Fill in Form
	Flatten Form
	Read Form
	Export Form
	Form Actions

	Security	Encryption
	Digital Signature
	Digital Signature Workflows
	Digital Signature PAdES
	Digital Signature PKCS#11
	Digital Signature Validation

	Attachments	Embedded Files
	File Attachment Annotations
	Portfolios
	Associated Files

	Platforms	ASP.NET Core
	Azure
	Blazor
	Docker
	Linux / macOS
	MAUI
	Xamarin
	Export to XpsDocument in WPF
	Export to ImageSource in WPF
	Classic ASP
	PHP
	Python

	Articles	Manipulate Images in PDF
	Printing
	PDF Security
	Convert PDF to Image
	Extract Content

	Free / Trial / Professional

	Free version
	Support
	Pricelist

 × 	Getting Started
	 Toggle Common Uses
	Reading
	Writing
	Convert
	Convert from Image
	Print
	Merge Files
	Split File

	 Toggle Basic Features
	Images
	Shapes (Paths)
	Content Formatting
	Bookmarks (Outlines)
	Hyperlinks
	Document Properties
	Header and Footer
	Watermarks
	Charts and Barcodes
	Table Of Contents

	 Toggle Advanced Features
	Cloning
	Incremental Update
	Viewer Preferences
	Content Streams and Resources
	Form XObjects
	Content Groups
	Marked Content
	Page Tree
	Basic Objects
	Private Fonts
	Optical Character Recognition (OCR)
	Redaction of Content

	 Toggle Interactive Forms
	Create Form
	Fill in Form
	Flatten Form
	Read Form
	Export Form
	Form Actions

	 Toggle Security
	Encryption
	Digital Signature
	Digital Signature Workflows
	Digital Signature PAdES
	Digital Signature PKCS#11
	Digital Signature Validation

	 Toggle Attachments
	Embedded Files
	File Attachment Annotations
	Portfolios
	Associated Files

	 Toggle Platforms
	ASP.NET Core
	Azure
	Blazor
	Docker
	Linux / macOS
	MAUI
	Xamarin
	Export to XpsDocument in WPF
	Export to ImageSource in WPF
	Classic ASP
	PHP
	Python

	 Toggle Articles
	Manipulate Images in PDF
	Printing
	PDF Security
	Convert PDF to Image
	Extract Content

	Free / Trial / Professional

Printing PDF documents Programmatically
When working with many PDF documents, the best solution is to manage all the operations programmatically. That includes printing on a large scale since you can solve everything faster in just a few lines of code instead of doing everything manually. With the GemBox.Pdf API, you can print high-quality PDF documents in .NET, using C# and VB.NET.
In this article, you will learn how to print PDF files programmatically, send them to the default printer, or specify any other local or network printer connected to your machine. You will also learn how to do silent printing or provide a print dialog and print preview.
You can navigate through the following sections:
	Install and configure the GemBox.Pdf library
	How to print PDF documents in C# and VB.NET
	 How to print multiple PDF files programmatically
	How to print specific pages of a PDF
	 Print a PDF document using different paper trays in C# and VB.NET
	How to Print a PDF on Both Sides of Papers (Duplex)
	How to print multiple copies of a PDF in C# and VB.NET
	How to specify the printer name
	How to print a PDF in Black and White (Grayscale) in C# and VB.NET

Install and configure the GemBox.Pdf library
Before you start, you need to install GemBox.Pdf. The best way to do that is to install the NuGet Package by following these instructions:
	Add the GemBox.Pdf component as a package using the following command from the NuGet Package Manager Console:
Install-Package GemBox.Pdf

	After installing the GemBox.Pdf library, you must call the ComponentInfo.SetLicense method before using any other member of the library.
ComponentInfo.SetLicense("FREE-LIMITED-KEY");

In this tutorial, by using "FREE-LIMITED-KEY", you will be using GemBox's free mode. This mode allows you to use the library without purchasing a license, but with some limitations. If you purchased a license, you can replace "FREE-LIMITED-KEY" with your serial key.
You can check this page for a complete step-by-step guide to installing and setting up GemBox.Pdf in other ways.
How to print PDF documents in C# and VB.NET
Scan of a printed PDF fileTo automate the printing of PDF documents, you can follow the simple steps below:
	Load the input PDF document using the PdfDocument class.
	Print the PDF file to a default printer with one of the PdfDocument.Print methods.

Verify the following code snippets to see how to print PDF files using C# and VB.NET:
	C#
	VB.NET

 Copy
using (var document = PdfDocument.Load("%#Print.pdf%")) // Print the document to default printer document.Print();

Using document = PdfDocument.Load("%#Print.pdf%") ' Print the document to default printer document.Print()End Using

How to print multiple PDF files programmatically
Depending on your work demands for PDF, it can be overwhelming and even impossible to handle each document, especially when you need to print dozens of different files simultaneously. As you can imagine, by extending the code presented in the previous section, you can easily print multiple files programmatically. To do that, simply follow these steps:
	Compose a list of the source file names you need to print.
	Iterate through the list of file names.
	Load the input PDF file using PdfDocument.Load(String).
	Print the files on the list with PdfDocument.Print(String).

The following code snippet shows how to print multiple PDF files using C# and VB.NET:
	C#
	VB.NET

 Copy
// Define file namesvar fileNames = new string[]{ "PrintFile01.pdf", "PrintFile02.pdf", "PrintFile03.pdf"};// Define the printer name or set to 'null' for the default onestring printerName = null;// Iterate through the list of file namesforeach (var fileName in fileNames) // Load a PDF file using (var document = PdfDocument.Load(fileName)) // Print the document to specified printer document.Print(printerName);

' Define file namesDim fileNames = New String(2) _{ "PrintFile01.pdf", "PrintFile02.pdf", "PrintFile03.pdf"}' Define the printer name or set to 'Nothing' for the default oneDim printerName As String = Nothing' Iterate through the list of file namesFor Each fileName In fileNames ' Load a PDF file Using document = PdfDocument.Load(fileName) ' Print the document to specifed printer document.Print(printerName) End UsingNext

How to print specific pages of a PDF
With GemBox.Pdf API, you can also print page ranges, which can be handy depending on the kind of job you are performing. Follow the steps below to print specific pages:
	Load the file you want to print the pages from, using the PdfDocument class.
	Select the printer by specifying the printer name, or set it to null to use the default one.
	Set specific pages to print by defining a range with the FromPage and ToPage parameters.
	Print the pages using the PdfDocument.Print(printerName, printOptions) method.

The code snippet below shows how to print specific pages of the document using C# and VB.NET:
	C#
	VB.NET

 Copy
using (var document = PdfDocument.Load("%#LoremIpsum.pdf%")){ // Define the printer name var printerName = "Microsoft Print to PDF"; // Define the range of pages to print (second to third page in this case) // NOTE: page range is zero-based which means that page numbers start with 0 var printOptions = new PrintOptions() { FromPage = 1, ToPage = 2 }; // Print the pages document.Print(printerName, printOptions);}

Using document = PdfDocument.Load("%#LoremIpsum.pdf%") ' Define the printer name Dim printerName = "Microsoft Print to PDF" ' Define the range of pages to print (second to third page in this case) ' NOTE: page range Is zero - based which means that page numbers start with 0 Dim PrintOptions = New PrintOptions() With { .FromPage = 1, .ToPage = 2 } ' Print the pages document.Print(printerName, PrintOptions)End Using

Print a PDF document using different paper trays in C# and VB.NET
The following tutorial explains how to print PDF documents choosing the printer's paper source (tray).
	Load the Pdf document you wish to print.
	Create options for printing.
	Set the paper source (tray) with the printTicket.PageMediaSize() method.
	Print the PDF document to the default printer.

And below you can check how the code will be like:
	C#
	VB.NET

 Copy
using (PdfDocument document = PdfDocument.Load("Print.pdf")){ // Creating a print ticket with customized paper source (tray) var printTicket = new System.Printing.PrintTicket { PageMediaSize = new System.Printing.PageMediaSize(System.Printing.PageMediaSizeName.ISOA5) }; // Print PDF document to default printer (e.g. 'Microsoft Print to Pdf'). string printerName = null; // Create options for printing var printOptions = new PrintOptions(printTicket.GetXmlStream()); document.Print(printerName, printOptions);}

Using document = PdfDocument.Load("Print.pdf") ' Creating a print ticket with customized paper source (tray) Dim printTicket = New Printing.PrintTicket With { .PageMediaSize = New Printing.PageMediaSize(Printing.PageMediaSizeName.ISOA5) } ' Print PDF document to default printer (e.g. 'Microsoft Print to Pdf'). Dim printerName As String = Nothing ' Create options for printing Dim printOptions = New PrintOptions(printTicket.GetXmlStream()) document.Print(printerName, printOptions)End Using

How to print a PDF file on Both Sides of Papers (Duplex)
If your printer offers duplex printing capabilities, you have the option to print a PDF on both sides of the paper. To perform this action, follow these steps:
	Load the desired PDF document using the PdfDocument.Load() class.
	Create a print ticket and define print job settings, set the Collation, and use Duplexing.TwoSidedLongEdge or Duplexing.TwoSidedShortEdge, depending on your needs.
	Convert the print ticket to GemBox.Pdf.PrintOptions.
	Print the document to the default printer.

	C#
	VB.NET

 Copy
using (var document = PdfDocument.Load("LoremIpsum.pdf")){ var printTicket = new PrintTicket { Collation = Collation.Collated, Duplexing = Duplexing.TwoSidedLongEdge }; var printOptions = new PrintOptions(printTicket.GetXmlStream()); document.Print(null, printOptions);}

Using document = PdfDocument.Load("LoremIpsum.pdf") Dim printTicket = New PrintTicket With { .Collation = Collation.Collated, .Duplexing = Duplexing.TwoSidedLongEdge } Dim printOptions = New PrintOptions(printTicket.GetXmlStream()) document.Print(Nothing, printOptions)End Using

Note that when working with PrintTicket instances, you don't have to fetch the DefaultPrintTicket from the desired printer's PrintQueue. GemBox.Pdf will do that internally and merge it with the PrintTicket you provided in your code. That's why, as shown in the example above, it's not necessary to specify all the options but only the ones you want to change.
How to print multiple copies of a PDF in C# and VB.NET
This tutorial explains how to print multiple copies of a PDF document:
	Load a PDF document using the PdfDocument.Load() class.
	Create a print ticket and define print job settings, setting the desired CopyCount.
	Call the document.Print() method to print the document.

	C#
	VB.NET

 Copy
using (var document = PdfDocument.Load("LoremIpsum.pdf")){ var printTicket = new PrintTicket { CopyCount = 2, }; var printOptions = new PrintOptions(printTicket.GetXmlStream()); document.Print(null, printOptions);}

Using document = PdfDocument.Load("LoremIpsum.pdf") Dim printTicket = New PrintTicket With { .CopyCount = 2, } Dim PrintOptions = New PrintOptions(printTicket.GetXmlStream()) document.Print(Nothing, PrintOptions)End Using

How to specify the printer name
If you have more than one printer, you can direct the printing of the PDF document to a designated printer by following these steps:
	Use the PdfDocument class to load the PDF document.
	Indicate the desired printer by assigning the name to the printerName string.
	Initiate the printing process by calling the document.Print(printerName) method.

	C#
	VB.NET

 Copy
using (var document = PdfDocument.Load("ExampleDocument.pdf")){ // Define the printer name var printerName = "Microsoft Print to PDF"; // Print the pages document.Print(printerName);}

Using document = PdfDocument.Load("LoremIpsum.pdf") ' Define the printer name Dim printerName = "Microsoft Print to PDF" ' Print the pages document.Print(printerName, PrintOptions)End Using

How to print a PDF in Black and White (Grayscale) in C# and VB.NET
The following steps outline how to programmatically print a PDF in black and white using C# and VB.NET:
	Load the desired PDF document.
	Create options for printing and a new printTicket.
	Set the output color of the document you want to print.
	Initiate the printing process setting up as the default printer.

	C#
	VB.NET

 Copy
using (PdfDocument document = PdfDocument.Load("Print.pdf")){ // Creating a print ticket with customized output color var printTicket = new System.Printing.PrintTicket { OutputColor = System.Printing.OutputColor.Grayscale }; // Print PDF document to default printer (e.g. 'Microsoft Print to Pdf'). string printerName = null; // Create options for printing var printOptions = new PrintOptions(printTicket.GetXmlStream()); document.Print(printerName, printOptions);}

Using document = PdfDocument.Load("Print.pdf") ' Creating a print ticket with customized output color Dim printTicket = New Printing.PrintTicket With { .OutputColor = Printing.OutputColor.Grayscale } ' Print PDF document to default printer (e.g. 'Microsoft Print to Pdf'). Dim printerName As String = Nothing ' Create options for printing Dim printOptions = New PrintOptions(printTicket.GetXmlStream()) document.Print(printerName, printOptions)End Using

Conclusion
Now you know how to optimize your work by printing PDF files programmatically. Besides the actions for printing described in this article, you can use the GemBox.Pdf API to read, write, merge, and split PDF files and execute other low-level object manipulations in a very straightforward and quick way.
For more information regarding the GemBox.Pdf API, check the documentation pages. You can also see the Print PDF files in C# and VB.NET example for more information on printing PDF documents in WPF applications.

See also

The Ultimate Guide on PDF Security in C#

Next steps
GemBox.Pdf is a .NET component that enables developers to read, merge and split PDF files or execute low-level object manipulations from .NET applications in a simple and efficient way.
Download Buy

GemBox.Pdf is a .NET component that enables developers to read, merge and split PDF files or execute low-level object manipulations from .NET applications in a simple and efficient way.
Our customers
Intel DHL MicrosoftWhat do they say
GemBox Technical Support is wonderful. They’re responsive and incredibly helpful by providing code snippets and examples. I’ve never had to go back to them twice for the same issue because the issue wasn’t addressed correctly. Congratulations on such a useful product and superior customer support!

 Aimee Stinson
 .NET Specialist at Xperts, Inc.

Being able to include the product directly in my C# project from the NuGet Package Manager has made its installation incredibly easy. So far it has worked brilliantly with a very intuitive API and easy learning curve.

 Ryan Russell
 Software Developer at Aventa Systems

All Examples

	Sitemap
	Terms of Service
	Privacy Policy
	Contact

 	 Twitter
	 Facebook
	 LinkedIn

 Return to Top
© GemBox Ltd. — All rights reserved.

