
 ×

GemBox.Pdf	Overview
	 Examples	Getting Started
	Common Uses	Reading
	Writing
	Convert
	Convert from Image
	Print
	Merge Files
	Split File

	Basic Features	Images
	Shapes (Paths)
	Content Formatting
	Bookmarks (Outlines)
	Hyperlinks
	Document Properties
	Header and Footer
	Watermarks
	Charts and Barcodes
	Table Of Contents

	Advanced Features	Cloning
	Incremental Update
	Viewer Preferences
	Content Streams and Resources
	Form XObjects
	Content Groups
	Marked Content
	Page Tree
	Basic Objects
	Private Fonts
	Optical Character Recognition (OCR)
	Redaction of Content

	Interactive Forms	Create Form
	Fill in Form
	Flatten Form
	Read Form
	Export Form
	Form Actions

	Security	Encryption
	Digital Signature
	Digital Signature Workflows
	Digital Signature PAdES
	Digital Signature PKCS#11
	Digital Signature Validation

	Attachments	Embedded Files
	File Attachment Annotations
	Portfolios
	Associated Files

	Platforms	ASP.NET Core
	Azure
	Blazor
	Docker
	Linux / macOS
	MAUI
	Xamarin
	Export to XpsDocument in WPF
	Export to ImageSource in WPF
	Classic ASP
	PHP
	Python

	Articles	Manipulate Images in PDF
	Printing
	PDF Security
	Convert PDF to Image
	Extract Content

	Free / Trial / Professional

	Free version
	Support
	Pricelist

 × 	Getting Started
	 Toggle Common Uses
	Reading
	Writing
	Convert
	Convert from Image
	Print
	Merge Files
	Split File

	 Toggle Basic Features
	Images
	Shapes (Paths)
	Content Formatting
	Bookmarks (Outlines)
	Hyperlinks
	Document Properties
	Header and Footer
	Watermarks
	Charts and Barcodes
	Table Of Contents

	 Toggle Advanced Features
	Cloning
	Incremental Update
	Viewer Preferences
	Content Streams and Resources
	Form XObjects
	Content Groups
	Marked Content
	Page Tree
	Basic Objects
	Private Fonts
	Optical Character Recognition (OCR)
	Redaction of Content

	 Toggle Interactive Forms
	Create Form
	Fill in Form
	Flatten Form
	Read Form
	Export Form
	Form Actions

	 Toggle Security
	Encryption
	Digital Signature
	Digital Signature Workflows
	Digital Signature PAdES
	Digital Signature PKCS#11
	Digital Signature Validation

	 Toggle Attachments
	Embedded Files
	File Attachment Annotations
	Portfolios
	Associated Files

	 Toggle Platforms
	ASP.NET Core
	Azure
	Blazor
	Docker
	Linux / macOS
	MAUI
	Xamarin
	Export to XpsDocument in WPF
	Export to ImageSource in WPF
	Classic ASP
	PHP
	Python

	 Toggle Articles
	Manipulate Images in PDF
	Printing
	PDF Security
	Convert PDF to Image
	Extract Content

	Free / Trial / Professional

Manipulate PDF content streams and resources in C# and VB.NET
Simply put, a content stream in PDF is a stream object that describes how a PDF application will render a page. A page can have one or multiple content streams. They are also used to describe a form XObject, or tiling pattern. Internally, they contain a sequence of instructions explaining how to draw elements (vectors, images, text) on a page.
Some instructions reference content stream resources, such as fonts, images, form XObjects, patterns, shadings, color spaces, or marked content properties which are contained in the accompanying resource dictionary and referenced from the content stream by a unique name.
GemBox.Pdf converts a content stream and the accompanying resource dictionary into a tree of PdfContentElements, starting with the PdfContent as the root, for easier inspection and manipulation.
Manipulating PDF content streams in C# and VB
In the following example, you can see how to improve performance when writing text to multiple pages using the same font. Keep in mind that the embedded subset of the font is calculated just once and not after editing each page.
Screenshot of multiple PDF pages edited with GemBox.Pdf library Run Example

Output file type Pdf
Xps
Png
Jpeg
Gif
Bmp
Tiff
Wdp

	C#
	VB.NET

 Copy View on GitHub
using GemBox.Pdf;using GemBox.Pdf.Content;class Program{ static void Main() { // If using the Professional version, put your serial key below. ComponentInfo.SetLicense("FREE-LIMITED-KEY"); using (var document = new PdfDocument()) { using (var formattedText = new PdfFormattedText()) { // Set the font to TrueType font that will be subset and embedded in the document. formattedText.Font = new PdfFont("Calibri", 96); // Draw a single letter on each page. for (int i = 0; i < 2; ++i) { formattedText.Append(((char)('A' + i)).ToString()); var page = document.Pages.Add(); // Begin editing the page content, but don't end it until all pages are edited. page.Content.BeginEdit(); page.Content.DrawText(formattedText, new PdfPoint(100, 500)); formattedText.Clear(); } } // End editing of all pages. // This will convert the content of each page back to the underlying content stream and the accompanying resource dictionary. // Subset of the 'Calibri' font, that contains only glyphs for characters 'A' to 'B' will be calculated just once before being // embedded in the document. foreach (var page in document.Pages) page.Content.EndEdit(); document.Save("Content Streams And Resources.%OutputFileType%"); } }}

Imports GemBox.PdfImports GemBox.Pdf.ContentModule Program Sub Main() ' If using the Professional version, put your serial key below. ComponentInfo.SetLicense("FREE-LIMITED-KEY") Using document = New PdfDocument() Using formattedText = New PdfFormattedText() ' Set the font to TrueType font that will be subset and embedded in the document. formattedText.Font = New PdfFont("Calibri", 96) ' Draw a single letter on each page. For i As Integer = 0 To 1 formattedText.Append(ChrW(AscW("A"c) + i).ToString()) Dim page = document.Pages.Add() ' Begin editing the page content, but don't end it until all pages are edited. page.Content.BeginEdit() page.Content.DrawText(formattedText, New PdfPoint(100, 500)) formattedText.Clear() Next End Using ' End editing of all pages. ' This will convert the content of each page back to the underlying content stream and the accompanying resource dictionary. ' Subset of the 'Calibri' font, that contains only glyphs for characters 'A' to 'B' will be calculated just once before being ' embedded in the document. For Each page In document.Pages page.Content.EndEdit() Next document.Save("Content Streams And Resources.%OutputFileType%") End Using End SubEnd Module

Notice that this example creates just two pages because of the free version limitations. But, the performance boost of using the demonstrated explicit editing of PDF pages would be more noticeable when writing different text to many pages using one or more TrueType/OpenType fonts on each page.
Technical notes
	When editing the PdfForm.Content or the PdfTilingPattern.Content, you must call PdfContent.BeginEdit() before and PdfContent.EndEdit() after editing.
	Calling PdfContent.BeginEdit() and PdfContent.EndEdit() is optional when editing the PdfPage.Content but might improve performance in some situations.
	When PdfContent.EndEdit() is called, GemBox.Pdf converts back the PdfContent and all PdfContentElements underneath it to a content stream and the accompanying resource dictionary.
	For more information about PDF content streams and resources in GemBox.Pdf, see the Content Streams and Resources help page.

See also

Create PDF form XObjects from C# / VB.NET applications

Next steps
GemBox.Pdf is a .NET component that enables developers to read, merge and split PDF files or execute low-level object manipulations from .NET applications in a simple and efficient way.
Download Buy

GemBox.Pdf is a .NET component that enables developers to read, merge and split PDF files or execute low-level object manipulations from .NET applications in a simple and efficient way.
Our customers
Intel DHL MicrosoftWhat do they say
Being able to include the product directly in my C# project from the NuGet Package Manager has made its installation incredibly easy. So far it has worked brilliantly with a very intuitive API and easy learning curve.

 Ryan Russell
 Software Developer at Aventa Systems

GemBox Technical Support is wonderful. They’re responsive and incredibly helpful by providing code snippets and examples. I’ve never had to go back to them twice for the same issue because the issue wasn’t addressed correctly. Congratulations on such a useful product and superior customer support!

 Aimee Stinson
 .NET Specialist at Xperts, Inc.

All Examples

	Sitemap
	Terms of Service
	Privacy Policy
	Contact

 	 Twitter
	 Facebook
	 LinkedIn

 Return to Top
© GemBox Ltd. — All rights reserved.

