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Manipulate PDF content streams and resources in C# and VB.NET
Simply put, a content stream in PDF is a stream object that describes how a PDF application will render a page. A page can have one or multiple content streams. They are also used to describe a form XObject, or tiling pattern. Internally, they contain a sequence of instructions explaining how to draw elements (vectors, images, text) on a page.
Some instructions reference content stream resources, such as fonts, images, form XObjects, patterns, shadings, color spaces, or marked content properties which are contained in the accompanying resource dictionary and referenced from the content stream by a unique name.
GemBox.Pdf converts a content stream and the accompanying resource dictionary into a tree of PdfContentElements, starting with the PdfContent as the root, for easier inspection and manipulation.
Manipulating PDF content streams in C# and VB
In the following example, you can see how to improve performance when writing text to multiple pages using the same font. Keep in mind that the embedded subset of the font is calculated just once and not after editing each page.
Screenshot of multiple PDF pages edited with GemBox.Pdf library    Run Example     
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 Copy   View on GitHub 
using GemBox.Pdf;using GemBox.Pdf.Content;class Program{    static void Main()    {        // If using the Professional version, put your serial key below.        ComponentInfo.SetLicense("FREE-LIMITED-KEY");        using (var document = new PdfDocument())        {            using (var formattedText = new PdfFormattedText())            {                // Set the font to TrueType font that will be subset and embedded in the document.                formattedText.Font = new PdfFont("Calibri", 96);                // Draw a single letter on each page.                for (int i = 0; i < 2; ++i)                {                    formattedText.Append(((char)('A' + i)).ToString());                    var page = document.Pages.Add();                    // Begin editing the page content, but don't end it until all pages are edited.                    page.Content.BeginEdit();                    page.Content.DrawText(formattedText, new PdfPoint(100, 500));                    formattedText.Clear();                }            }            // End editing of all pages.            // This will convert the content of each page back to the underlying content stream and the accompanying resource dictionary.            // Subset of the 'Calibri' font, that contains only glyphs for characters 'A' to 'B' will be calculated just once before being            // embedded in the document.            foreach (var page in document.Pages)                page.Content.EndEdit();            document.Save("Content Streams And Resources.%OutputFileType%");        }    }}

Imports GemBox.PdfImports GemBox.Pdf.ContentModule Program    Sub Main()        ' If using the Professional version, put your serial key below.        ComponentInfo.SetLicense("FREE-LIMITED-KEY")        Using document = New PdfDocument()            Using formattedText = New PdfFormattedText()                ' Set the font to TrueType font that will be subset and embedded in the document.                formattedText.Font = New PdfFont("Calibri", 96)                ' Draw a single letter on each page.                For i As Integer = 0 To 1                    formattedText.Append(ChrW(AscW("A"c) + i).ToString())                    Dim page = document.Pages.Add()                    ' Begin editing the page content, but don't end it until all pages are edited.                    page.Content.BeginEdit()                    page.Content.DrawText(formattedText, New PdfPoint(100, 500))                    formattedText.Clear()                Next            End Using            ' End editing of all pages.            ' This will convert the content of each page back to the underlying content stream and the accompanying resource dictionary.            ' Subset of the 'Calibri' font, that contains only glyphs for characters 'A' to 'B' will be calculated just once before being            ' embedded in the document.            For Each page In document.Pages                page.Content.EndEdit()            Next            document.Save("Content Streams And Resources.%OutputFileType%")        End Using    End SubEnd Module



Notice that this example creates just two pages because of the free version limitations. But, the performance boost of using the demonstrated explicit editing of PDF pages would be more noticeable when writing different text to many pages using one or more TrueType/OpenType fonts on each page.
Technical notes
	When editing the PdfForm.Content or the PdfTilingPattern.Content, you must call PdfContent.BeginEdit() before and PdfContent.EndEdit() after editing.
	Calling PdfContent.BeginEdit() and PdfContent.EndEdit() is optional when editing the PdfPage.Content but might improve performance in some situations.
	When PdfContent.EndEdit() is called, GemBox.Pdf converts back the PdfContent and all PdfContentElements underneath it to a content stream and the accompanying resource dictionary.
	For more information about PDF content streams and resources in GemBox.Pdf, see the Content Streams and Resources help page.


See also

Create PDF form XObjects from C# / VB.NET applications



Next steps
GemBox.Pdf is a .NET component that enables developers to read, merge and split PDF files or execute low-level object manipulations from .NET applications in a simple and efficient way.
Download Buy

GemBox.Pdf is a .NET component that enables developers to read, merge and split PDF files or execute low-level object manipulations from .NET applications in a simple and efficient way.
Our customers
Intel DHL MicrosoftWhat do they say
Being able to include the product directly in my C# project from the NuGet Package Manager has made its installation incredibly easy. So far it has worked brilliantly with a very intuitive API and easy learning curve.

 Ryan Russell 
 Software Developer at Aventa Systems 

GemBox Technical Support is wonderful. They’re responsive and incredibly helpful by providing code snippets and examples. I’ve never had to go back to them twice for the same issue because the issue wasn’t addressed correctly. Congratulations on such a useful product and superior customer support!

 Aimee Stinson 
 .NET Specialist at Xperts, Inc. 
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