
 ×

GemBox.Pdf	Overview
	 Examples	Getting Started
	Common Uses	Reading
	Writing
	Convert
	Convert from Image
	Print
	Merge Files
	Split File

	Basic Features	Images
	Shapes (Paths)
	Content Formatting
	Bookmarks (Outlines)
	Hyperlinks
	Document Properties
	Header and Footer
	Watermarks
	Charts and Barcodes
	Table Of Contents

	Advanced Features	Cloning
	Incremental Update
	Viewer Preferences
	Content Streams and Resources
	Form XObjects
	Content Groups
	Marked Content
	Page Tree
	Basic Objects
	Private Fonts
	Optical Character Recognition (OCR)
	Redaction of Content

	Interactive Forms	Create Form
	Fill in Form
	Flatten Form
	Read Form
	Export Form
	Form Actions

	Security	Encryption
	Digital Signature
	Digital Signature Workflows
	Digital Signature PAdES
	Digital Signature PKCS#11
	Digital Signature Validation

	Attachments	Embedded Files
	File Attachment Annotations
	Portfolios
	Associated Files

	Platforms	ASP.NET Core
	Azure
	Blazor
	Docker
	Linux / macOS
	MAUI
	Xamarin
	Export to XpsDocument in WPF
	Export to ImageSource in WPF
	Classic ASP
	PHP
	Python

	Articles	Manipulate Images in PDF
	Printing
	PDF Security
	Convert PDF to Image
	Extract Content

	Free / Trial / Professional

	Free version
	Support
	Pricelist

 × 	Getting Started
	 Toggle Common Uses
	Reading
	Writing
	Convert
	Convert from Image
	Print
	Merge Files
	Split File

	 Toggle Basic Features
	Images
	Shapes (Paths)
	Content Formatting
	Bookmarks (Outlines)
	Hyperlinks
	Document Properties
	Header and Footer
	Watermarks
	Charts and Barcodes
	Table Of Contents

	 Toggle Advanced Features
	Cloning
	Incremental Update
	Viewer Preferences
	Content Streams and Resources
	Form XObjects
	Content Groups
	Marked Content
	Page Tree
	Basic Objects
	Private Fonts
	Optical Character Recognition (OCR)
	Redaction of Content

	 Toggle Interactive Forms
	Create Form
	Fill in Form
	Flatten Form
	Read Form
	Export Form
	Form Actions

	 Toggle Security
	Encryption
	Digital Signature
	Digital Signature Workflows
	Digital Signature PAdES
	Digital Signature PKCS#11
	Digital Signature Validation

	 Toggle Attachments
	Embedded Files
	File Attachment Annotations
	Portfolios
	Associated Files

	 Toggle Platforms
	ASP.NET Core
	Azure
	Blazor
	Docker
	Linux / macOS
	MAUI
	Xamarin
	Export to XpsDocument in WPF
	Export to ImageSource in WPF
	Classic ASP
	PHP
	Python

	 Toggle Articles
	Manipulate Images in PDF
	Printing
	PDF Security
	Convert PDF to Image
	Extract Content

	Free / Trial / Professional

Decrypt and Encrypt PDF files in C# and VB.NET
You can use PDF encryption as a security mechanism to:
	Allow only the people that know the password to view your PDF.
	Prohibit anyone to print or edit your PDF, which is enforced by the PDF viewer/editor application.

With GemBox.Pdf, you can perform the following PDF encryption scenarios in your C# or VB.NET application:
	Encrypt a PDF file
	Restrict editing of a PDF file
	Specify encryption settings
	Decrypt a PDF file
	Retrying decryption

With the examples below, you will be able to understand how to use GemBox.Pdf for each of those scenarios.
Encrypt a PDF file
See the example below to learn how to encrypt an existing PDF file with a password.
 Run Example

Upload your file (Drag file here) (Click to browse files)

Input file name ExportImages.pdf
Form.pdf
FormFilled.pdf
Hello World.pdf
Invoice.pdf
LoremIpsum.pdf
MergeFile01.pdf
MergeFile02.pdf
MergeFile03.pdf
Reading.pdf
TextContent.pdf

Document Open password

	C#
	VB.NET

 Copy View on GitHub
using GemBox.Pdf;class Program{ static void Main() { // If using the Professional version, put your serial key below. ComponentInfo.SetLicense("FREE-LIMITED-KEY"); // Load PDF document from an unencrypted PDF file. using (var document = PdfDocument.Load("%InputFileName%")) { // Set password-based encryption with password required to open a PDF document. document.SaveOptions.SetPasswordEncryption().DocumentOpenPassword = "%DocumentOpenPassword%"; // Save PDF document to an encrypted PDF file. document.Save("Encryption.pdf"); } }}

Imports GemBox.PdfModule Program Sub Main() ' If using the Professional version, put your serial key below. ComponentInfo.SetLicense("FREE-LIMITED-KEY") ' Load PDF document from an unencrypted PDF file. Using document = PdfDocument.Load("%InputFileName%") ' Set password-based encryption with password required to open a PDF document. document.SaveOptions.SetPasswordEncryption().DocumentOpenPassword = "%DocumentOpenPassword%" ' Save PDF document to an encrypted PDF file. document.Save("Encryption.pdf") End Using End SubEnd Module

Screenshot of PDF file encrypted using GemBox.PdfAs shown in the screenshot from above, the output PDF file has a Password Security method and Document Open Password is required to open a PDF file.
You can perform all operations except page extraction. The Restrict Editing example shows how to modify user access permissions.
The PDF encryption level is 128-bit AES and is supported in Adobe Acrobat 7.0 and later. All contents of the document are encrypted, including metadata (used by search engines). The Encryption Settings example shows how to modify the encryption level and options.
Restrict editing of a PDF file
If you need to restrict users from editing PDF files, see the example below.
 Run Example

Upload your file (Drag file here) (Click to browse files)

Input file name ExportImages.pdf
Form.pdf
FormFilled.pdf
Hello World.pdf
Invoice.pdf
LoremIpsum.pdf
MergeFile01.pdf
MergeFile02.pdf
MergeFile03.pdf
Reading.pdf
TextContent.pdf

Permissions password

	C#
	VB.NET

 Copy View on GitHub
using GemBox.Pdf;using GemBox.Pdf.Security;class Program{ static void Main() { // If using the Professional version, put your serial key below. ComponentInfo.SetLicense("FREE-LIMITED-KEY"); // Load PDF document from an unencrypted PDF file. using (var document = PdfDocument.Load("%InputFileName%")) { // Set password-based encryption to an output PDF file. var encryption = document.SaveOptions.SetPasswordEncryption(); // Specify password required to edit a PDF document. encryption.PermissionsPassword = "%PermissionsPassword%"; // User will be able to print PDF and fill-in PDF form // without requiring a password. encryption.Permissions = PdfUserAccessPermissions.Print | PdfUserAccessPermissions.FillForm | PdfUserAccessPermissions.CopyContentForAccessibility | PdfUserAccessPermissions.PrintHighResolution; // Save PDF document to an encrypted PDF file. document.Save("Restrict Editing.pdf"); } }}

Imports GemBox.PdfImports GemBox.Pdf.SecurityModule Program Sub Main() ' If using the Professional version, put your serial key below. ComponentInfo.SetLicense("FREE-LIMITED-KEY") ' Load PDF document from an unencrypted PDF file. Using document = PdfDocument.Load("%InputFileName%") ' Set password-based encryption to an output PDF file. Dim encryption = document.SaveOptions.SetPasswordEncryption() ' Specify password required to edit a PDF document. encryption.PermissionsPassword = "%PermissionsPassword%" ' User will be able to print PDF and fill-in PDF form ' without requiring a password. encryption.Permissions = PdfUserAccessPermissions.Print Or PdfUserAccessPermissions.FillForm Or PdfUserAccessPermissions.CopyContentForAccessibility Or PdfUserAccessPermissions.PrintHighResolution ' Save PDF document to an encrypted PDF file. document.Save("Restrict Editing.pdf") End Using End SubEnd Module

Screenshot of PDF file with editing restrictions set with GemBox.PdfPDF encryption enables the enforcement of various user access permissions. In the example above, users can only print a document and fill in an interactive form if it exists in the file.
Applications can copy text and graphics for accessibility, as an example, to users with disabilities.
Note that the PDF viewer/editor does the enforcement of user access permissions. You can open and bypass those restrictions in a PDF file by using applications that do not respect PDF specification requirements.
GemBox.Pdf does not respect PDF specification requirements regarding user access permissions because it is not an end-user application. Also keep in mind that although a PDF file is encrypted, a password is not necessary to open it.
Specify encryption settings
The following example shows how to encrypt an existing PDF file using various encryption settings.
 Run Example

Upload your file (Drag file here) (Click to browse files)

Input file name ExportImages.pdf
Form.pdf
FormFilled.pdf
Hello World.pdf
Invoice.pdf
LoremIpsum.pdf
MergeFile01.pdf
MergeFile02.pdf
MergeFile03.pdf
Reading.pdf
TextContent.pdf

Document Open password

Permissions password

	C#
	VB.NET

 Copy View on GitHub
using GemBox.Pdf;using GemBox.Pdf.Security;class Program{ static void Main() { // If using the Professional version, put your serial key below. ComponentInfo.SetLicense("FREE-LIMITED-KEY"); // Load PDF document from an unencrypted PDF file. using (var document = PdfDocument.Load("%InputFileName%")) { // Set password-based encryption to an output PDF file. var encryption = document.SaveOptions.SetPasswordEncryption(); // Specify password required to open a PDF document. encryption.DocumentOpenPassword = "%DocumentOpenPassword%"; // Specify password required to edit a PDF document. encryption.PermissionsPassword = "%PermissionsPassword%"; // User will be able to print PDF and fill-in PDF form // without requiring a password. encryption.Permissions = PdfUserAccessPermissions.Print | PdfUserAccessPermissions.FillForm | PdfUserAccessPermissions.CopyContentForAccessibility | PdfUserAccessPermissions.PrintHighResolution; // Specify 256-bit AES encryption level (supported in Acrobat X and later). encryption.EncryptionLevel = new PdfEncryptionLevel(PdfEncryptionAlgorithm.AES, 256); // Encrypt content and embedded files but do not encrypt document's metadata. encryption.Options = PdfEncryptionOptions.EncryptContent | PdfEncryptionOptions.EncryptEmbeddedFiles; // Save PDF document to an encrypted PDF file. document.Save("Encryption Settings.pdf"); } }}

Imports GemBox.PdfImports GemBox.Pdf.SecurityModule Program Sub Main() ' If using the Professional version, put your serial key below. ComponentInfo.SetLicense("FREE-LIMITED-KEY") ' Load PDF document from an unencrypted PDF file. Using document = PdfDocument.Load("%InputFileName%") ' Set password-based encryption to an output PDF file. Dim encryption = document.SaveOptions.SetPasswordEncryption() ' Specify password required to open a PDF document. encryption.DocumentOpenPassword = "%DocumentOpenPassword%" ' Specify password required to edit a PDF document. encryption.PermissionsPassword = "%PermissionsPassword%" ' User will be able to print PDF and fill-in PDF form ' without requiring a password. encryption.Permissions = PdfUserAccessPermissions.Print Or PdfUserAccessPermissions.FillForm Or PdfUserAccessPermissions.CopyContentForAccessibility Or PdfUserAccessPermissions.PrintHighResolution ' Specify 256-bit AES encryption level (supported in Acrobat X and later). encryption.EncryptionLevel = New PdfEncryptionLevel(PdfEncryptionAlgorithm.AES, 256) ' Encrypt content and embedded files but do not encrypt document's metadata. encryption.Options = PdfEncryptionOptions.EncryptContent Or PdfEncryptionOptions.EncryptEmbeddedFiles ' Save PDF document to an encrypted PDF file. document.Save("Encryption Settings.pdf") End Using End SubEnd Module

Screenshot of PDF file with encryption settings set with GemBox.PdfThe first part of this example is a combination of Encrypt and Restrict Editing examples so a password (either the DocumentOpenPassword or the PermissionsPassword) will be required to open a document and only users who entered a PermissionsPassword will be able to edit a document in a PDF editor application.
The last part of this example shows how to set the encryption to the strongest level currently supported by PDF password-based encryption – 256-bit AES supported by Adobe Acrobat X and later.
It also shows how to specify which parts of a PDF file should be encrypted. In this example, the document's metadata stream is excluded from encryption so search engines will be able to access it.
Decrypt a PDF file
The following example shows how to load an encrypted PDF file, remove the encryption, and then save it as an unencrypted PDF file.
 Run Example

Upload your file (Drag file here) (Click to browse files)

Input file name Encryption.pdf
ExportImages.pdf
Form.pdf
FormFilled.pdf
Hello World.pdf
Invoice.pdf
LoremIpsum.pdf
MergeFile01.pdf
MergeFile02.pdf
MergeFile03.pdf
Reading.pdf
TextContent.pdf

Document Open password

	C#
	VB.NET

 Copy View on GitHub
using System;using GemBox.Pdf;using GemBox.Pdf.Security;class Program{ static void Main() { // If using the Professional version, put your serial key below. ComponentInfo.SetLicense("FREE-LIMITED-KEY"); try { // Load PDF document from a potentially encrypted PDF file. using (var document = PdfDocument.Load("%InputFileName%", new PdfLoadOptions() { Password = "%DocumentOpenPassword%" })) { // Remove encryption from an output PDF file. document.SaveOptions.Encryption = null; // Save PDF document to an unencrypted PDF file. document.Save("Decryption.pdf"); } } catch (InvalidPdfPasswordException ex) { // Gracefully handle the case when input PDF file is encrypted // and provided password is invalid. Console.WriteLine(ex.Message); } }}

Imports SystemImports GemBox.PdfImports GemBox.Pdf.SecurityModule Program Sub Main() ' If using the Professional version, put your serial key below. ComponentInfo.SetLicense("FREE-LIMITED-KEY") Try ' Load PDF document from a potentially encrypted PDF file. Using document = PdfDocument.Load("%InputFileName%", New PdfLoadOptions() With {.Password = "%DocumentOpenPassword%"}) ' Remove encryption from an output PDF file. document.SaveOptions.Encryption = Nothing 'Save PDF document to an unencrypted PDF file. document.Save("Decryption.pdf") End Using Catch ex As InvalidPdfPasswordException ' Gracefully handle the case when input PDF file is encrypted ' and provided password is invalid. Console.WriteLine(ex.Message) End Try End SubEnd Module

Screenshot of opening a password-encrypted PDF fileTo decrypt a PDF file when loading a PDF document, either the DocumentOpenPassword or the PermissionsPassword must be specified in the PdfLoadOptions.Password property. If the specified password is invalid, then an InvalidPdfPasswordException is thrown.
If you just want to check if the PDF file is encrypted, then you can load the PDF file without providing a password and check if the PdfDocument.SaveOptions.Encryption is not null.
If the input PDF file is not encrypted or is encrypted but with an empty DocumentOpenPassword (like in the Restrict Editing example), then the password specified in the PdfLoadOptions.Password property is not used.
Note that GemBox.Pdf verifies the password only when the first PdfString or PdfStream from an encrypted PDF file has to be read, since only strings and streams are subject to encryption, based on the PDF specification. As a consequence, an InvalidPdfPasswordException might be thrown after the loading of a PDF document.
This behavior enables you to extract some useful information from an encrypted PDF file without knowing its DocumentOpenPassword password, like number of pages or other information that doesn't directly reference any PdfString or PdfStream.
Retrying decryption
The following example shows how you can try decrypting an encrypted PDF file with multiple passwords using the PdfLoadOptions.LoadingEncrypted event. Note that the event only fires when reading encrypted files.
	C#
	VB.NET

 Copy View on GitHub
using System;using GemBox.Pdf;using GemBox.Pdf.Security;class Program{ static void Main() { // If using the Professional version, put your serial key below. ComponentInfo.SetLicense("FREE-LIMITED-KEY"); var loadOptions = new PdfLoadOptions(); loadOptions.AuthorizationOnDocumentOpen = true; loadOptions.LoadingEncrypted += (sender, e) => { Console.WriteLine("PDF file is encrypted, please enter the password:"); bool wrongPassword; do { string password = Console.ReadLine(); if (string.IsNullOrEmpty(password)) break; wrongPassword = !e.SetPassword(password); if (wrongPassword) Console.WriteLine("The password is incorrect, please try again:"); } while (wrongPassword); }; try { using (var document = PdfDocument.Load("%#Encryption.pdf%", loadOptions)) { Console.WriteLine("The correct password was provided."); } } catch (InvalidPdfPasswordException) { Console.WriteLine("The incorrect password was provided."); } }}

Imports SystemImports GemBox.PdfImports GemBox.Pdf.SecurityModule Program Sub Main() ' If using the Professional version, put your serial key below. ComponentInfo.SetLicense("FREE-LIMITED-KEY") Dim loadOptions As New PdfLoadOptions() loadOptions.AuthorizationOnDocumentOpen = True AddHandler loadOptions.LoadingEncrypted, Sub(sender, e) Console.WriteLine("PDF file is encrypted, please enter the password:") Dim wrongPassword As Boolean Do Dim password As String = Console.ReadLine() If String.IsNullOrEmpty(password) Then Exit Do wrongPassword = Not e.SetPassword(password) If wrongPassword Then Console.WriteLine("The password is incorrect, please try again:") Loop While wrongPassword End Sub Try Using document = PdfDocument.Load("%#Encryption.pdf%", LoadOptions) Console.WriteLine("The correct password was provided.") End Using Catch ex As InvalidPdfPasswordException Console.WriteLine("The incorrect password was provided.") End Try End SubEnd Module

Screenshot of multiple attempts of opening an encrypted PDF
See also

Digitally sign PDF files from C# / VB.NET applications

Next steps
GemBox.Pdf is a .NET component that enables developers to read, merge and split PDF files or execute low-level object manipulations from .NET applications in a simple and efficient way.
Download Buy

GemBox.Pdf is a .NET component that enables developers to read, merge and split PDF files or execute low-level object manipulations from .NET applications in a simple and efficient way.
Our customers
BP Microsoft NASAWhat do they say
GemBox Technical Support is wonderful. They’re responsive and incredibly helpful by providing code snippets and examples. I’ve never had to go back to them twice for the same issue because the issue wasn’t addressed correctly. Congratulations on such a useful product and superior customer support!

 Aimee Stinson
 .NET Specialist at Xperts, Inc.

Being able to include the product directly in my C# project from the NuGet Package Manager has made its installation incredibly easy. So far it has worked brilliantly with a very intuitive API and easy learning curve.

 Ryan Russell
 Software Developer at Aventa Systems

All Examples

	Sitemap
	Terms of Service
	Privacy Policy
	Contact

 	 Twitter
	 Facebook
	 LinkedIn

 Return to Top
© GemBox Ltd. — All rights reserved.

