
 ×

GemBox.Pdf	Overview
	 Examples	Getting Started
	Common Uses	Reading
	Writing
	Convert
	Convert from Image
	Print
	Merge Files
	Split File

	Basic Features	Images
	Shapes (Paths)
	Content Formatting
	Bookmarks (Outlines)
	Hyperlinks
	Document Properties
	Header and Footer
	Watermarks
	Charts and Barcodes
	Table Of Contents

	Advanced Features	Cloning
	Incremental Update
	Viewer Preferences
	Content Streams and Resources
	Form XObjects
	Content Groups
	Marked Content
	Page Tree
	Basic Objects
	Private Fonts
	Optical Character Recognition (OCR)
	Redaction of Content

	Interactive Forms	Create Form
	Fill in Form
	Flatten Form
	Read Form
	Export Form
	Form Actions

	Security	Encryption
	Digital Signature
	Digital Signature Workflows
	Digital Signature PAdES
	Digital Signature PKCS#11
	Digital Signature Validation

	Attachments	Embedded Files
	File Attachment Annotations
	Portfolios
	Associated Files

	Platforms	ASP.NET Core
	Azure
	Blazor
	Docker
	Linux / macOS
	MAUI
	Xamarin
	Export to XpsDocument in WPF
	Export to ImageSource in WPF
	Classic ASP
	PHP
	Python

	Articles	Manipulate Images in PDF
	Printing
	PDF Security
	Convert PDF to Image
	Extract Content

	Free / Trial / Professional

	Free version
	Support
	Pricelist

 × 	Getting Started
	 Toggle Common Uses
	Reading
	Writing
	Convert
	Convert from Image
	Print
	Merge Files
	Split File

	 Toggle Basic Features
	Images
	Shapes (Paths)
	Content Formatting
	Bookmarks (Outlines)
	Hyperlinks
	Document Properties
	Header and Footer
	Watermarks
	Charts and Barcodes
	Table Of Contents

	 Toggle Advanced Features
	Cloning
	Incremental Update
	Viewer Preferences
	Content Streams and Resources
	Form XObjects
	Content Groups
	Marked Content
	Page Tree
	Basic Objects
	Private Fonts
	Optical Character Recognition (OCR)
	Redaction of Content

	 Toggle Interactive Forms
	Create Form
	Fill in Form
	Flatten Form
	Read Form
	Export Form
	Form Actions

	 Toggle Security
	Encryption
	Digital Signature
	Digital Signature Workflows
	Digital Signature PAdES
	Digital Signature PKCS#11
	Digital Signature Validation

	 Toggle Attachments
	Embedded Files
	File Attachment Annotations
	Portfolios
	Associated Files

	 Toggle Platforms
	ASP.NET Core
	Azure
	Blazor
	Docker
	Linux / macOS
	MAUI
	Xamarin
	Export to XpsDocument in WPF
	Export to ImageSource in WPF
	Classic ASP
	PHP
	Python

	 Toggle Articles
	Manipulate Images in PDF
	Printing
	PDF Security
	Convert PDF to Image
	Extract Content

	Free / Trial / Professional

Add, Export, Remove and Transform Images in PDF
In the same way as other document formats, PDF documents require manipulating images and graphics to represent elements when text alone isn't enough. Manipulation doesn't mean only adding images, but sometimes replacing the existing ones or exporting them to a new document, for example. This article will teach you how to add, export, remove, and transform images in your PDF files programmatically, using the GemBox.Pdf API in C#.
How to Manipulate Images in PDF Programmatically
GemBox.Pdf is a standalone .NET component, which doesn't depend on Adobe Acrobat, and it's 100% managed code. This API allows you to read, write, create, and update PDF files in .NET, .NET Core, .NET Framework, Mono, and Xamarin.
GemBox.Pdf also provides an API for manipulating PDF file security options, allowing you to encrypt and digitally sign your files, and manage other PDF content in a very straightforward way.
Furthermore, you can work with images by adding, exporting, removing, and transforming them in an existing PDF file in a much faster and optimized way.
The following topics will cover how to perform all of these actions, with examples of code you can use to edit PDF documents programmatically.
Add Images to a PDF File using C#
Screenshot of a PDF file with added imageYou can follow the next steps to add or import an image to a PDF document using GemBox.Pdf.
	Use the PdfDocument class to create a new or load an existing PDF file.
	Load the image from a file using the PdfImage.Load(String) method.
	Set the location of the image on the page.
	Draw the image to the page with the PdfPage.Content.DrawImage(PdfImage, PdfPoint) method.
	Save the updated PDF file using the PdfDocument.Save(String) method.

See the code sample below to learn how to add images to a PDF file using C#.
	C#

 Copy
using (var document = new PdfDocument()){ // Add a page var page = document.Pages.Add(); // Load the image from a file var image = PdfImage.Load("%#FragonardReader.jpg%"); // Define image x and y position // NOTE: In PDF, location (0, 0) is at the bottom-left corner of the page // and the positive y axis extends vertically upward double x = 50, y = 100; // Draw the image to the page page.Content.DrawImage(image, new PdfPoint(x, y)); // Save the resulting document as a PDF file document.Save("AddImage.pdf");}

Export Images from PDF using C#
Screenshot of a PDF file with imagesIf you want to extract images from a PDF file in JPEG, BMP, PNG, or TIFF image formats, you can do it by following the next steps:
	With the PdfDocument class, load the existing PDF file with the images you want to export.
	Find images iterateing through PDF pages and each page's content elements.
	Save the found images in the desired format using one of the PdfImageContent.Save methods.

The following code sample shows how to extract images from PDF using C#.
	C#

 Copy
using (var document = PdfDocument.Load("%#ExportImages.pdf%")){ var i = 0; // Filter image elements by iterating through all PDF page content elements var elements = document.Pages .SelectMany(p => p.Content.Elements.All()) .Where(e => e.ElementType == PdfContentElementType.Image) .Cast<PdfImageContent>(); // Iterate through all image elements foreach (var element in elements) // Export an image content element to the selected image format element.Save($"Image_{++i}.jpeg");}

Remove Images from PDF using C#
Screenshot of a PDF file with removed imageYou can always remove the images from existing PDF files. The process of removing images from a PDF file using C# consists of 3 easy steps:
	Load the PDF file using the PdfDocument class.
	Remove image(s) using the PdfContentElementCollection.Remove(PdfContentElement) method.
	Save the updated PDF file using one of the PdfDocument.Save methods.

The following code sample shows how to remove an image from a PDF using C#.
	C#

 Copy
using (var document = PdfDocument.Load("%#ExportImages.pdf%")){ // Find first image in the PDF document by iterating through all page content elements var image = document.Pages .SelectMany(p => p.Content.Elements.All()) .Where(e => e.ElementType == PdfContentElementType.Image) .Cast<PdfImageContent>() .FirstOrDefault(); // Remove image from its parent collection image.Collection.Remove(image); // Save modified document to a PDF file document.Save("RemoveImage.pdf");}

Position and transform images in PDF using C#
Screenshot of a PDF file with transformed imageWith GemBox.Pdf, you can also position and apply various transformations, such as rotation or scaling, to an image drawn on a PDF page.
For example, if you want to mirror an image, you can follow the next steps:
	Create a new or load an existing PDF file with the PdfDocument class.
	Set the location of the image on the page.
	Draw the image using the PdfPage.Content.DrawImage(PdfImage, PdfPoint) method.
	Start the transformation by getting an identity PdfMatrix. Use a combination of PdfMatrix.Translate and PdfMatrix.Scale methods to flip the image.
	Draw the transformed image using the PdfPage.Content.DrawImage(PdfImage, PdfMatrix) method.
	Save the PDF document to a file using one of the PdfDocument.Save methods.

Next, you can see the code sample showing how to position and mirror an image in PDF, using C#.
	C#

 Copy
using (var document = new PdfDocument()){ // Add a blank page var page = document.Pages.Add(); // Load the image from a file var image = PdfImage.Load("%#Corner.png%"); // Define a page margin var margin = 20.0; // Set the location of the image in the top-left corner of the page (with a specified margin) var x = margin; var y = page.CropBox.Top - margin - image.Size.Height; // Draw the first image. page.Content.DrawImage(image, new PdfPoint(x, y)); // Set the location of the second image in the top-right corner of the page (with the same margin) x = page.CropBox.Right - margin - image.Size.Width; y = page.CropBox.Top - margin - image.Size.Height; // Initialize the transformation var transform = PdfMatrix.Identity; // Use the translate operation to position the image transform.Translate(x, y); // Use the scale operation to resize the image transform.Scale(image.Size.Width, image.Size.Height); // Use the scale operation to flip the image horizontally transform.Scale(-1, 1, 0.5, 0); // Draw the second image page.Content.DrawImage(image, transform); // Save the document to a PDF file document.Save("TransformImage.pdf");}

Conclusion
Images are crucial elements in PDF documents. That's why it's essential to understand how to manipulate them properly when managing PDF in C#. After completing this tutorial, you can start creating PDF documents with images or edit existing ones in a much easier and faster way.
For more information, check the GemBox.Pdf documentation.

See also

How to print PDF documents in C# and VB.NET

Next steps
GemBox.Pdf is a .NET component that enables developers to read, merge and split PDF files or execute low-level object manipulations from .NET applications in a simple and efficient way.
Download Buy

GemBox.Pdf is a .NET component that enables developers to read, merge and split PDF files or execute low-level object manipulations from .NET applications in a simple and efficient way.
Our customers
DHL NASA BPWhat do they say
Being able to include the product directly in my C# project from the NuGet Package Manager has made its installation incredibly easy. So far it has worked brilliantly with a very intuitive API and easy learning curve.

 Ryan Russell
 Software Developer at Aventa Systems

GemBox Technical Support is wonderful. They’re responsive and incredibly helpful by providing code snippets and examples. I’ve never had to go back to them twice for the same issue because the issue wasn’t addressed correctly. Congratulations on such a useful product and superior customer support!

 Aimee Stinson
 .NET Specialist at Xperts, Inc.

All Examples

	Sitemap
	Terms of Service
	Privacy Policy
	Contact

 	 Twitter
	 Facebook
	 LinkedIn

 Return to Top
© GemBox Ltd. — All rights reserved.

