
 ×

GemBox.Document	Overview
	 Examples	Getting Started
	Common Uses	Reading
	Writing
	Template Use
	Convert to PDF
	Convert to Image
	Convert from HTML
	Convert PDF to DOCX
	Extract Text from PDF
	Print

	Formatting	Character Formatting
	Paragraph Formatting
	Lists
	Styles

	Basic Features	Barcodes
	Bookmarks and Hyperlinks
	Breaks
	Charts
	Comments
	Document Properties
	Fields
	Footnotes and Endnotes
	Headers and Footers
	Page Setup
	Pictures
	Text Boxes
	Shapes
	Table Of Content
	Track Changes
	View Options
	Watermarks

	Advanced Features	Auto Hyphenation
	Content Controls
	Html Import and Export
	Convert from MHTML
	Extract pages
	Modify Bookmarks
	Private Fonts
	Progress Reporting and Cancellation
	Right to Left Text
	Style Resolution
	Unit Conversion
	VBA Macros

	Table	Simple Table
	Insert DataTable
	Merge Cells
	Table Formatting
	Table Styles

	Element Manipulation	Cloning
	Combining
	Iterating

	Content Manipulation	Get Content
	Set Content
	Insert Content
	Delete Content
	Find and Replace

	Mail Merge	Merge Fields
	Merge Pictures
	Merge Ranges
	Merge Barcodes
	Merge Labels
	If Fields
	Clear Options
	Customize Merge
	Nested Merge

	Forms	Create Form
	Read Form
	Update Form

	Protection	DOCX Write Protection
	DOCX Encryption
	DOCX Digital Signature
	PDF Encryption
	PDF Digital Signature
	Restrict Editing

	Platforms	ASP.NET Core
	Word Editor in ASP.NET MVC
	Medium Trust in ASP.NET Web Forms
	Azure
	Blazor
	Docker
	Linux / macOS
	MAUI
	Xamarin
	Export to XpsDocument in WPF
	Export to ImageSource in WPF
	Word Editor in WPF
	Word Editor in Windows Forms
	Classic ASP
	PHP
	Python

	Articles	Convert HTML to PDF
	Convert ASPX to PDF
	Find and Replace
	Create or Generate PDF files
	Microsoft Office Interop
	Load and Process PDF files
	Convert Word to PDF

	Preservation
	Performance
	Free / Trial / Professional

	Free version
	Support
	Pricelist

 × 	Getting Started
	 Toggle Common Uses
	Reading
	Writing
	Template Use
	Convert to PDF
	Convert to Image
	Convert from HTML
	Convert PDF to DOCX
	Extract Text from PDF
	Print

	 Toggle Formatting
	Character Formatting
	Paragraph Formatting
	Lists
	Styles

	 Toggle Basic Features
	Barcodes
	Bookmarks and Hyperlinks
	Breaks
	Charts
	Comments
	Document Properties
	Fields
	Footnotes and Endnotes
	Headers and Footers
	Page Setup
	Pictures
	Text Boxes
	Shapes
	Table Of Content
	Track Changes
	View Options
	Watermarks

	 Toggle Advanced Features
	Auto Hyphenation
	Content Controls
	Html Import and Export
	Convert from MHTML
	Extract pages
	Modify Bookmarks
	Private Fonts
	Progress Reporting and Cancellation
	Right to Left Text
	Style Resolution
	Unit Conversion
	VBA Macros

	 Toggle Table
	Simple Table
	Insert DataTable
	Merge Cells
	Table Formatting
	Table Styles

	 Toggle Element Manipulation
	Cloning
	Combining
	Iterating

	 Toggle Content Manipulation
	Get Content
	Set Content
	Insert Content
	Delete Content
	Find and Replace

	 Toggle Mail Merge
	Merge Fields
	Merge Pictures
	Merge Ranges
	Merge Barcodes
	Merge Labels
	If Fields
	Clear Options
	Customize Merge
	Nested Merge

	 Toggle Forms
	Create Form
	Read Form
	Update Form

	 Toggle Protection
	DOCX Write Protection
	DOCX Encryption
	DOCX Digital Signature
	PDF Encryption
	PDF Digital Signature
	Restrict Editing

	 Toggle Platforms
	ASP.NET Core
	Word Editor in ASP.NET MVC
	Medium Trust in ASP.NET Web Forms
	Azure
	Blazor
	Docker
	Linux / macOS
	MAUI
	Xamarin
	Export to XpsDocument in WPF
	Export to ImageSource in WPF
	Word Editor in WPF
	Word Editor in Windows Forms
	Classic ASP
	PHP
	Python

	 Toggle Articles
	Convert HTML to PDF
	Convert ASPX to PDF
	Find and Replace
	Create or Generate PDF files
	Microsoft Office Interop
	Load and Process PDF files
	Convert Word to PDF

	Preservation
	Performance
	Free / Trial / Professional

How to load and process a Pdf file in C#
You can use various options to read PDF files using the GemBox components. Each component has its advantages and it is suitable in different scenarios, such as the following:
	Logical loading is best for extracting text from tables and paragraphs.
	High-fidelity loading, which produces visually very similar results when converting to DOCX or other file formats.
	Loading using GemBox.Pdf, which gives you low-level control when editing a PDF file.

You can browse through the sections below to completely understand how to choose the right option for loading PDF files:
	Logical loading
	High-fidelity loading
	Loading using GemBox.Pdf
	Summary of how to choose the right loading approach

Logical loading
PDF is a fixed document format, which means that the location of every text, border line, background fill, etc. is specified in page coordinates and is, potentially, transformed. Whereas GemBox.Document model is a flow document format, such as HTML, for example. Therefore to read a PDF file into a GemBox.Document, elements such as Tables and Paragraphs must be recognized from PDF-positioned text and lines/paths.
The recognition of PDF logical structure in GemBox.Document is based on various heuristics that we have implemented and plan to improve and extend over time based on customer feedback. However, note that a fully correct recognition is impossible to achieve just by reading the content of PDF pages because higher level information is required to disambiguate certain cases.
For example, a PDF page with text in two columns could be a table with a single row and two cells or a section with two columns. Or, a PDF page with a single small line of text in the middle of it could be a paragraph with left alignment and left indentation, right alignment, and right indentation, or some other combination.
Logical loading is the default option when loading PDF files in GemBox.Document.
	C#

 Copy
var document = DocumentModel.Load("Input.pdf");

Which has the same effect as explicitly specifying the loading type on PdfLoadOptions.
	C#

 Copy
var document = DocumentModel.Load("Input.pdf", new PdfLoadOptions(){ LoadType = PdfLoadType.Logical});

You can then work with the loading document. For example you can print all paragraphs in the document to the console.
	C#

 Copy
foreach (var paragraph in document.GetChildElements(true, ElementType.Paragraph)) Console.WriteLine(paragraph.Content.ToString());

High-fidelity loading
The high-fidelity loading uses text frames and text boxes to position the text in the same location as it appeared on the PDF page. The PDF page graphics are converted to shapes or rendered into temporary images that are then inserted into a page.
Although the output of this approach looks very similar or identical to the input PDF, it has the following drawbacks:
	The logical structure of the document is not available. For example, if you have a table in a PDF file and you want to extract the content of a cell in the second row and third column, that is not possible since there is no table.
	Text search is limited - Since logically connected text segments might end up in different text frames, looking for a term that spans two or more text frames is not possible.
	Editing is limited - Since text segments are absolutely positioned on a page using text frames, removing or adding new text doesn't reflow the rest of the content; the positions of all text frames are independent of each other.

To load a PDF file using high-fidelity loading, you can use PdfLoadType.HighFidelity
	C#

 Copy
var document = DocumentModel.Load("Input.pdf", new PdfLoadOptions(){ LoadType = PdfLoadType.HighFidelity});

You can then save the document, for example to DOCX file format.
	C#

 Copy
document.Save("Output.docx");

Loading using GemBox.Pdf
Alternatively, you can choose the GemBox.Pdf component
	C#

 Copy
using GemBox.Pdf;

And then you can use this component to load the PDF file.
	C#

 Copy
using (var document = PdfDocument.Load("Reading.pdf")){ // Work with the document}

This gives you lower-level access to the PDF elements and gives you more control over editing the document and more precise information when extracting content and properties of PDF elements.
For example, you can iterate over all pages and print their content to the console.
	C#

 Copy
foreach (var page in document.Pages){ Console.WriteLine(page.Content.ToString());}

To learn more about GemBox.Pdf you can check out its examples.
How to choose the loading approach
The following table can help you choose which option is the best for your use case.
	
	Logical loading
with GemBox.Document	High-fidelity loading
with GemBox.Document	Loading
with GemBox.Pdf
	Summary	The file is loaded by trying to detect the logical structure of the document.	The file is loaded by absolutely positioning paragraphs, shapes, and images on pages.	The loaded model corresponds directly to the (low-level) PDF specification.
	Advantages		The loaded document has a flow structure making it easier to edit.
	Easy to extract text from tables and paragraphs.

		The loaded document looks almost identical to the original PDF.
	Almost every PDF feature is recognized.

		The model gives precise control over all PDF features.

	Disadvantages		Only limited number of elements are recognized.
	Visually, the loaded document doesn't look exactly like the original PDF.

		The absolute positioning of elements makes it harder to edit the document in MS Word or similar applications.

		The lower level model makes it harder to work with.
	Doesn't support conversion to DOCX and other office file formats.

	When to use		Flow structure extraction (tables, paragraphs).
	Conversion to other file formats if heavy editing is expected after the conversion.

		Conversion to other file formats such as DOCX, RTF, ODT, or XPS.

		Editing of PDF documents.
	Conversion to image file formats.

Conclusion
In this article, you learned how to load your PDF files in various ways, using either GemBox.Document or GemBox.Pdf. After this comparison,s you will be able to choose the proper component you should work with while loading your PDF documents in C#.
For more information, check the GemBox.Pdf documentation, and th GemBox.Document documentation.
If you have any questions regarding this article, refer to our forum page or submit a ticket to our technical support.

See also

How to convert Word (DOCX) to PDF from C# / VB.NET applications

Next steps
GemBox.Document is a .NET component that enables you to read, write, edit, convert, and print document files from your .NET applications using one simple API. How about testing it today?
Download Buy

GemBox.Document is a .NET component that enables you to read, write, edit, convert, and print document files from your .NET applications using one simple API.
Our customers
NASA DHL IntelWhat do they say
My company has implemented Gembox.Document, Gembox.Spreadsheet, and Gembox.Presentation. The customer service has been outstanding!!! I truly can’t be happier with the customer service. The documentation has been straight forward and easy. I trialed a couple of other competitors prior to finding Gembox, but where those competitors failed, Gembox succeeded. I’m glad we found Gembox.

 Liem
 Senior Software Engineer at GetDocsNow.com

To say that I am happy with the GemBox.Document purchase is an understatement. Not only does it do what I had hoped it would, but it also does a lot more and I probably haven’t even touched the surface. I have also had the need to contact technical service twice, and both time they have gotten back to me in less than a day and solved my problem. I cannot speak highly enough of your product and customer service, and I am telling my developer friends all about it!

 Greg Harshman
 Purchasing & Software Developer at PFB America Corp.

All Examples

	Sitemap
	Terms of Service
	Privacy Policy
	Contact

 	 Twitter
	 Facebook
	 LinkedIn

 Return to Top
© GemBox Ltd. — All rights reserved.

